Abstract

A mixed-model assembly line (MMAL) is a type of production line where a variety of product models similar to product characteristics are assembled. There is a set of criteria on which to judge sequences of product models in terms of the effective utilization of this line. In this paper, we consider three objectives, simultaneously: minimizing total utility work, total production rate variation, and total setup cost. A multi-objective sequencing problem and its mathematical formulation are described. Since this type of problem is NP-hard, a new multi-objective scatter search (MOSS) is designed for searching locally Pareto-optimal frontier for the problem. To validate the performance of the proposed algorithm, in terms of solution quality and diversity level, various test problems are made and the reliability of the proposed algorithm, based on some comparison metrics, is compared with three prominent multi-objective genetic algorithms, i.e. PS-NC GA, NSGA-II, and SPEA-II. The computational results show that the proposed MOSS outperforms the existing genetic algorithms, especially for the large-sized problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.