Abstract
Weapon-target assignment (WTA) is critical to command and decision making in modern battlefields and is a typical nondeterministic polynomial complete problem. To solve WTA problems with multiple optimization objectives, a multipopulation coevolution-based multiobjective particle swarm optimization (MOPSO) algorithm is proposed to realize the rapid search for the globally optimal solution. The algorithm constructs a master-slave population coevolution model. Each slave population corresponds to an objective function and is used to search for noninferior solutions. The master population receives all the noninferior solutions from the slave populations, repairs the gaps between the noninferior solutions, and generates a relatively optimal Pareto optimal solution set. In addition, to accelerate the slave populations searching for noninferior solutions and master population repairing the gaps between noninferior solutions, the particle velocity update method is improved. The simulation results show that the proposed algorithm has higher computational efficiency and achieves better solutions than existing algorithms capable of providing a good solution. The method is suitable for rapidly solving multiobjective WTA (MOWTA) problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.