Abstract

Purpose The purpose of this paper is to design and optimize economic and environmental dimensions in a sustainable supply chain (SSC) network. This paper developed a mixed-integer linear programing (MILP) model to incorporate economical and environmental data for multi-objective optimization of the SSC network. Design/methodology/approach The overall objective of the present study is to use high-quality raw materials, at the same time the lowest amount of pollution emission and the highest profitability is achieved. The model in the problem is solved using two algorithms, namely, multi-objective genetic and multi-objective particle swarm. In this research, to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system. Findings The differences found between the genetic algorithms (GAs) and the MILP approaches can be explained by handling the constraints and their various logics. The solutions are contrasted with the original crisp model based on either MILP or GA, offering more robustness to the proposed approach. Practical implications The model is applied to Mega Motor company to optimize the sustainability performance of the supply chain i.e. economic (cost), social (time) and environmental (pollution of raw material). The research method has two approaches, namely, applied and mathematical modeling. Originality/value There is limited research designing and optimizing the SSC network. This study is among the first to integrate sustainable supplier selection and optimization of sustainability performance indicators in supply chain network design considering minimization of cost and time and maximization of sustainability indexes of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.