Abstract

Under the complicated driving conditions, the sharp acceleration and deceleration actions would cause the high-rate charge and discharge current of electric driving system in hybrid electric vehicle (HEV), which brings about a serious impact on the battery lifetime. The hybrid energy storage system (HESS) combined with battery and ultracapacitor (UC), would be a possible solution to this problem. For HEV with HESS, in addition to improving fuel economy, realizing the protection of battery is also an important objective. However, improving one aspect performance may sacrifice another aspect performance. The tradeoff between multiple optimization objectives remains a challenge for energy management design. Aiming at this problem, a multi-objective optimization energy management strategy based on velocity prediction for a dual-mode power split HEV with HESS is proposed in this paper. Firstly, to get the precise predictive input sequence, generalized regression neural network (GRNN) is used to predict future velocity. Secondly, the power distribution of dual-mode power spilt HEV with HESS is described as a rolling optimization problem in the prediction horizon of model predictive control (MPC). A new cost function considering the fuel consumption and the protection of the battery is brought forward, and the optimization problem is solved using Pontryagin's minimum principle (PMP). Moreover, the Powell-Modified algorithm is introduced to execute the solving process of PMP. Finally, the proposed strategy is verified by comparing it with four other strategies under four different driving cycles. Compared to the rule-based strategy, the proposed strategy reduces root mean square (RMS) of battery current and fuel consumption by up to 18.5 % and 18.9 %, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.