Abstract

End-of-life product recycling is a hot research topic in recent years, which can reduce the waste and protect the environment. To disassemble products, the disassembly line balancing is a principal problem that selects tasks and assigns them to a number of workstations under stochastic task processing times. In existing works, stochastic task processing times are usually estimated by probability distributions or fuzzy numbers. However, in real-life applications, only their partial information is accessible. This paper studies a bi-objective stochastic disassembly line balancing problem to minimise the line design cost and the cycle time, with only the knowledge of the mean, standard deviation and upper bound of stochastic task processing times. For the problem, a bi-objective chance-constrained model is developed, which is further approximated into a bi-objective distribution-free one. Based on the problem analysis, two versions of the ϵ-constraint method are proposed to solve the transformed model. Finally, a fuzzy-logic technique is adapted to propose a preferable solution for decision makers according to their preferences. A case study is presented to illustrate the validity of the proposed models and algorithms. Experimental results on 277 benchmark-based and randomly generated instances show the efficiency of the proposed methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call