Abstract

Sparse unmixing of hyperspectral data is an important technique aiming at estimating the fractional abundances of the endmembers. Traditional sparse unmixing is faced with the $\boldsymbol {l_{0}}$ -norm problem which is an NP-hard problem. Sparse unmixing is inherently a multiobjective optimization problem. Most of the recent works combine cost functions into single one to construct an aggregate objective function, which involves weighted parameters that are sensitive to different data sets and difficult to tune. In this paper, a novel multiobjective cooperative coevolutionary algorithm is proposed to optimize the reconstruction term, the sparsity term and the total variation regularization term simultaneously. A problem-dependent cooperative coevolutionary strategy is designed because sparse unmixing encounters a large scale optimization problem. The proposed approach optimizes the nonconvex $\boldsymbol {l_{0}}$ -norm problem directly and can find a better compromise between two or more competing cost function terms automatically. Experimental results on simulated and real hyperspectral data sets demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.