Abstract

An elaborately designed integrated power distribution and electric vehicle (EV) charging system will not only reduce the investment and operation cost of the system concerned, but also promote the popularization of environmentally friendly EVs. In this context, a multi-objective collaborative planning strategy is presented to deal with the optimal planning issue in integrated power distribution and EV charging systems. In the developed model, the overall annual cost of investment and energy losses is minimized simultaneously with the maximization of the annual traffic flow captured by fast charging stations (FCSs). Additionally, the user equilibrium based traffic assignment model (UETAM) is integrated to address the maximal traffic flow capturing problem. Subsequently, a decomposition based multi-objective evolutionary algorithm (MOEA/D) is employed to seek the non-dominated solutions, i.e., the Pareto frontier. Finally, collaborative planning results of two coupled distribution and transportation systems are presented to illustrate the performance of the proposed model and solution method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.