Abstract

In chemical plants, operability problems arise mainly due to poor process designs, inaccurate models and/or the control system designs that are unable to cope with process uncertainties. In this paper, a process design methodology is presented that addresses the issue of improving dynamic operability in the present of process uncertainty through appropriate design modifications. The multiobjective nature of the design problem is carefully exploited in the subsequent formulations and a nonlinear programming approach is taken for the simultaneous treatment of both steady-state and dynamic constraints. Scope—Today, a chemical engineer faces the challenge of designing chemical plants that can operate safely, smoothly and profitably within a dynamic process environment. For a typical chemical plant, major contributions to such an environment originate from external disturbances such as variations in the feedstock quality, different product specifications and/or internal disturbances like catalyst poisoning and heat-exchanger fouling. To guarantee a flexible operation despite such upsets, traditionally, the procedure was either to oversize the equipment or to place large storage tanks between the processing units. Proposed design methods attempted to find optimal operating regimes for chemical plants while compensating for process uncertainty through empirical overdesign factors. Studies concerned with the interplay between the process design and operation aspects have appeared recently [1, 2] and focused on achieving better controllability upon modifying the plant design, without explicitly considering process uncertainty. Nevertheless, maintaining satisfactory dynamic operability in an environment of uncertainty remained as a pressing issue and the need was raised quite frequently for a rigorous treatment of the topic [3]. The development of new analytical tools [4, 5] made it possible to consider dynamic operability at the process design stage and modify the plant design accordingly. In this paper, a methodology is presented, that systematically guides the designer towards process designs with better dynamic operability and economics, The problem is formulated within a multiobjective optimization framework and makes extensive use of singular-value decomposition and nonlinear semi-infinite programming techniques. Conclusions and Significance—A multiobjective optimization problem is proposed for designing chemical processes with better dynamic operability characteristics. Robustness indices are used as the indicators of dynamic operability and placed as constraints within the optimization scheme. A semi-infinite nonlinear programming problem results due to the frequency-dependent nature of such constraints. A discretization procedure is suggested to handle the infinite number of constraints and an ellipsoid algorithm allows an interactive solution of the process design problem. A process consisting of three CSTRs is treated as an example, illustrating the potential of the methodology in solving design-related operability problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call