Abstract

Although researchers have long studied using statistical modeling techniques to detect anomaly intrusion and profile user behavior, the feasibility of applying multinomial logistic regression modeling to predict multi-attack types has not been addressed, and the risk factors associated with individual major attacks remain unclear. To address the gaps, this study used the KDD-cup 1999 data and bootstrap simulation method to fit 3000 multinomial logistic regression models with the most frequent attack types ( probe, DoS, U2R, and R2L) as an unordered independent variable, and identified 13 risk factors that are statistically significantly associated with these attacks. These risk factors were then used to construct a final multinomial model that had an ROC area of 0.99 for detecting abnormal events. Compared with the top KDD-cup 1999 winning results that were based on a rule-based decision tree algorithm, the multinomial logistic model-based classification results had similar sensitivity values in detecting normal (98.3% vs. 99.5%), probe (85.6% vs. 83.3%), and DoS (97.2% vs. 97.1%); remarkably high sensitivity in U2R (25.9% vs. 13.2%) and R2L (11.2% vs. 8.4%); and a significantly lower overall misclassification rate (18.9% vs. 35.7%). The study emphasizes that the multinomial logistic regression modeling technique with the 13 risk factors provides a robust approach to detect anomaly intrusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call