Abstract

Tubuloglomerular feedback implies that a primary increase in arterial pressure, renal blood flow, glomerular filtration and increased flow rate in the distal tubule increase preglomerular resistance and thereby counteract the primary rise in glomerular filtration rate and renal blood flow. Tubuloglomerular feedback has therefore been assumed to play a role in renal autoregulation, i.e., the constancy of renal blood flow and glomerular filtration at varying arterial pressure. In evaluating this hypothesis, the numerous tubular and vascular mechanisms involved have called for mathematical models. Based on a single nephron model we have previously concluded that tubuloglomerular feedback can account for only a small part of blood flow autoregulation. We now present a more realistic multinephron model, consisting of one interlobular artery with an arbitrary number of evenly spaced afferent arterioles. Feedback from the distal tubule was simulated by letting glomerular blood flow exert a positive feedback on preglomerular resistance, in each case requiring compatibility with experimental open-loop responses in the most superficial nephron. The coupling together of 10 nephrons per se impairs autoregulation of renal blood flow compared to that of a single nephron model, but this effect is more than outweighed by greater control resistance in deep arterioles. Some further improvement was obtained by letting the contractile response spread from each afferent arteriole to the nearest interlobular artery segment. Even better autoregulation was provided by spreading of full strength contraction also to the nearest upstream or downstream afferent arteriole, and spread to both caused a renal blood flow autoregulation approaching experimental observations. However, when the spread effect was reduced to 25% of that in each stimulated afferent arteriole, more compatible with recent experimental observations, the autoregulation was greatly impaired. Some additional mechanism seems necessary, and we found that combined myogenic response in interlobular artery and tubuloglomerular feedback regulation of afferent arterioles can mimic experimental pressure-flow curves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call