Abstract

Objective. Electrocardiogram (ECG) is an important diagnostic tool that has been the subject of much research in recent years. Owing to a lack of well-labeled ECG record databases, most of this work has focused on heartbeat arrhythmia detection based on ECG signal quality. Approach. A record quality filter was designed to judge ECG signal quality, and a random forest method, a multilayer perceptron, and a residual neural network (RESNET)-based convolutional neural network were implemented to provide baselines for ECG record classification according to three different principles. A new multimodel method was constructed by fusing the random forest and RESNET approaches. Main Results. Owing to its ability to combine discriminative human-crafted features with RESNET deep features, the proposed new method showed over 88% classification accuracy and yielded the best results in comparison with alternative methods. Significance. A new multimodel fusion method was presented for abnormal cardiovascular detection based on ECG data. The experimental results show that separable convolution and multiscale convolution are vital for ECG record classification and are effective for use with one-dimensional ECG sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.