Abstract

The revise abstract is given as follows: The rapid emergence of the super-spreader COVID-19 with severe economic calamities with devastating social impact worldwide created the demand for effective research on the spread dynamics of the disease to combat and create surveillance systems on a global scale. In this study, a novel hybrid Deterministic Autoregressive Fractional Integral Moving Average (ARFIMA) model is presented to forecast the bimodal COVID-19 transmission dynamics. The heterogeneity of multimodal behavior of the COVID-19 pandemic in Pakistan is modeled by a hybrid paradigm, in which a deterministic pattern is combined with the ARFIMA model to absorb the inherent chaotic pattern of the pandemic spread. The fractional fluctuation of the real epidemic system is effectively taken as a paradigm by stochastic type improved the deterministic model and ARFIMA process. Special transformations are also introduced to enhance the convergent rate of the bimodal paradigm in deterministic modeling. The outcome of the improved deterministic model is combined with the ARFIMA model is evaluated on the spread pattern of pandemic data in Pakistan for the next 30 days. The performance-indices of the hybrid-model based on Relative-Errors and RMSE statistics confirmed the effectiveness of the proposed paradigm for long-term epidemic modeling compared to other classical and machine learning algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call