Abstract
Mitochondria, as vital energy supplying organelles, play important roles in cellular metabolism, which are closely related with mitochondrial pH (∼8.0). In this work, a novel multimodal fluorescent probe was employed for ratiometric and colorimetric detection of pH. The probe is designed to work by controlling benzothiazole phenol-hemicyanine system as the interaction site and hemicyanine connected by conjugate bonds as the mitochondrial targeting, which also could make the fluorescence of probe red-shifted. This system results in a perfect ratiometric fluorescent response, whose emission changed from red to blue under pH 2.0–10.0, having a broad linear range (pH = 3.0–10.0). And the marked colour change (light yellow to deep purple via naked eye under pH 2.0–11.0) could be used to construct the test strip colorimetry and smartphone APP detection method, realizing the fast, portable, and accurate detection of pH in vitro and environment. Besides, the probe owns the characteristics of easy loading, high selectivity and staining ability of mitochondria, and low cytotoxicity, thereby allowing imaging of pH values and real-time monitor the subcellular mitochondria pH changes caused by drugs in living cells. It thus could be used to monitor the organ-specific dynamics related to transitions between pathological and physiological states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.