Abstract

Cancer becomes life-threatening when it affects vital organs and their potential to function; therefore, early discovery is crucial for prognosis management. Medical research benefits from the rapid growth of Artificial Intelligence (AI) technology, notably machine learning (ML), deep learning (DL), and reinforcement learning (RL) which has resulted in the development of several approaches and techniques for improving cancer prediction and survival analysis. To improve cancer prognosis prediction and survival analysis, a novel framework that fuses multimodal features via early and late fusion techniques using DL and RL is presented. The approach utilizes an artificial algae algorithm (AAA) to extract the most resilient features from the dataset and build a robust model for cancer prognosis and prediction. The uniqueness of this technique is illustrated by using AAA to extract valuable features from a variety of data modalities infused with Double DEEP Q-NETWORK (DDQN), Convolution eXtreme Gradient Boosting (CNN-XGBOOST), and Convolution Support Vector Machine (CNN-SVM) models for cancer prognostic prediction. The effectiveness of the proposed framework was evaluated using publicly-available datasets: Lower Grade Glioma in the Brain(BRAIN-TCGA), Prostate Cancer, Bladder Cancer, Metastatic Colorectal Cancer (MSKCC), and the METABRIC dataset. The optimum accuracy achieved was 0.99 for the BRAIN-TCGA dataset, surpassing a variety of state-of-the-art techniques. The performance assessment results reveal that the proposed model outperforms currently available cancer prognostic prediction models in terms of predictive performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.