Abstract

In recent years, the general interest in routing for vehicular ad hoc networks (VANETs) has increased notably. Many proposals have been presented to improve the behavior of the routing decisions in these very changeable networks. In this paper, we propose a new routing protocol for VANETs that uses four different metrics. which are the distance to destination, the vehicles' density, the vehicles' trajectory and the available bandwidth, making use of the information retrieved by the sensors of the vehicle, in order to make forwarding decisions, minimizing packet losses and packet delay. Through simulation, we compare our proposal to other protocols, such as AODV (Ad hoc On-Demand Distance Vector), GPSR (Greedy Perimeter Stateless Routing), I-GPSR (Improvement GPSR) and to our previous proposal, GBSR-B (Greedy Buffer Stateless Routing Building-aware). Besides, we present a performance evaluation of the individual importance of each metric to make forwarding decisions. Experimental results show that our proposed forwarding decision outperforms existing solutions in terms of packet delivery.

Highlights

  • Vehicular ad hoc networks (VANETs) [1,2] are an emerging area of wireless networking that facilitate ubiquitous connectivity among smart vehicles through vehicle-to-vehicle (V2V) communications and between vehicles and the city or the road infrastructure through vehicle-to-roadside (V2R)communications

  • We analyzed the performance of our multimetric algorithm MMMR and compared it to AODV [19], GPSR [6], Improvement GPSR routing protocol (I-GPSR) [11] and GBSR-B [20]

  • We show the results with AODV for comparison purposes, because this protocol is an important reference in mobile ad hoc networks and is the basis for other reactive protocols designed for vehicular ad hoc networks (VANETs)

Read more

Summary

Introduction

This emerging technology field aims to improve the safety of passengers, alleviate the traffic flow, reduce pollution and enable in-vehicle entertainment applications for passengers. Safety applications can reduce accidents by providing traffic information to drivers, such as collision warning, road surface conditions or the state of the traffic flow. The unique characteristics and some special requirements of VANETs generate different challenges for the research community. To address these challenges in both safety and comfort-oriented applications, there is a pressing need to develop new routing protocols specially designed for this kind of network, which provide a good performance, either under sparse or dense traffic conditions. Simulation results show the benefits of our protocol compared to other proposals under different network conditions

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.