Abstract

We investigated flooding patterns in the urbanised city-state of Singapore through a multimethod approach combining station precipitation data with archival newspaper and governmental records; changes in flash floods frequencies or reported impacts of floods towards Singapore society were documented. We subsequently discussed potential flooding impacts in the context of urban vulnerability, based on future urbanisation and forecasted precipitation projections for Singapore. We find that, despite effective flood management, (i) significant increases in reported flash flood frequency occurred in contemporary (post-2000) relative to preceding (1984–1999) periods, (ii) these flash floods coincide with more localised, “patchy” storm events, (iii) storms in recent years are also more intense and frequent, and (iv) floods result in low human casualties but have high economic costs via insurance damage claims. We assess that Singapore presently has low vulnerability to floods vis-à-vis other regional cities largely due to holistic flood management via consistent and successful infrastructural development, widespread flood monitoring, and effective advisory platforms. We conclude, however, that future vulnerabilities may increase from stresses arising from physical exposure to climate change and from demographic sensitivity via rapid population growth. Anticipating these changes is potentially useful in maintaining the high resilience of Singapore towards this hydrometeorological hazard.

Highlights

  • Since the mid-20th century, the gradual and extensive movement of people from rural to urban areas, combined with the physical consequences of this migration, has been a distinct feature of the Anthropocene epoch [1]

  • Despite effective flood management, (i) significant increases in reported flash flood frequency occurred in contemporary relative to preceding (1984–1999) periods, (ii) these flash floods coincide with more localised, “patchy” storm events, (iii) storms in recent years are more intense and frequent, and (iv) floods result in low human casualties but have high economic costs via insurance damage claims

  • We obtained hourly climate data from 1956 to 2015 recorded at the meteorological station located at Changi Airport that are provided by the National Climatic Data Center (NCDC)

Read more

Summary

Introduction

Since the mid-20th century, the gradual and extensive movement of people from rural (or undeveloped) to urban (developed) areas, combined with the physical consequences of this migration, has been a distinct feature of the Anthropocene epoch [1]. The UHI and increased roughness associated with cities vis-a-vis its rural surroundings, as well as with larger aerosol emissions from urban metabolism processes (i.e., through industrial and vehicular emissions), potentially influencing precipitation characteristics above cities. In several cases, these result in clear variations of frequency, magnitude, and spatial heterogeneity of urban-induced precipitation across city-wide [5] and regional scales [6].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.