Abstract

Accurate SGD (submarine groundwater discharge) mass export calculations require detailed knowledge of the spatial and temporal variability in SGD rates. In coastal aquifers, SGD includes a terrestrial freshwater component as well as a saline component originating from circulating seawater. Representative field measurements of SGD rates are difficult to conduct, because SGD is often patchy, diffuse, and temporally variable, especially under tidal influence and high wave activity. In this study, a combination of lysimeters, seepage meters, temperature sensors, pore water radon, and numerical modeling was used to estimate the volumes of infiltrating seawater and exfiltrating groundwater in the intertidal zone of a mesotidal, high energy beach on Spiekeroog Island, northern Germany. Additionally, a 3D-laser scanner was used over short (days) and medium time scales (months) to determine changes in beach topography. The results showed net water infiltration above mean sea level (MSL) and net exfiltration below MSL. Water exchange rates fluctuated between 0.001 and 0.61 m day−1, showing similar ranges within the multiple method approaches. The beach topography was subject to strong fluctuation caused by waves, currents, wind driven erosion and sedimentation, even over short time scales. A comparison of extrapolated in- and exfiltrating water volumes along a beach transect from the mean high water to mean low water line at different times highlights the variability of total in or outflow. The results show that exchange rates depend on beach topography, which in turn changes significantly over time.

Highlights

  • Over the last decades several studies have suggested that, in addition to riverine inputs, the nutrient fluxes entering the ocean via submarine groundwater discharge (SGD) play an important role for marine ecology and elemental cycles (Johannes, 1980; Swarzenski, 2007; Moore et al, 2008; Kwon et al, 2014; Cho et al, 2018)

  • Very low SGD rates or infiltrating conditions are indicated by little increase of temperature with depth

  • This study provides insights into the spatial variability of exchange rates within a subterranean estuary (STE) in a meso-tidal, highly dynamic environment

Read more

Summary

Introduction

Over the last decades several studies have suggested that, in addition to riverine inputs, the nutrient fluxes entering the ocean via submarine groundwater discharge (SGD) play an important role for marine ecology and elemental cycles (Johannes, 1980; Swarzenski, 2007; Moore et al, 2008; Kwon et al, 2014; Cho et al, 2018). Fluxes of SGD generally depend on hydro(geo)logical parameters, i.e. beach slope, aquifer depth, hydraulic conductivity, tidal amplitude, or the terrestrial freshwater flux (e.g., Michael et al, 2005; Robinson et al, 2007; Abarca et al, 2013; Greskowiak, 2014; Evans and Wilson, 2016). This makes precise SGD measurements in the field difficult to conduct as SGD predominantly occurs patchy, diffuse, as well as being spatially and temporally variable (Burnett et al, 2006; Röper et al, 2014). Under high energy conditions, conducting field measurements is challenging

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.