Abstract
In this paper, a multi-master/single-slave (MM/SS) teleoperated system is discussed. The desired objectives for the MM/SS system include both cooperative and training applications, such as surgical teleoperation and surgical training. An impedance-based control methodology is developed to satisfy the desired objectives of the MM/SS system in the presence of unknown communication delay. The developed methodology is an extension of a structure previously proposed for a dual-user system. To analysis stability of the closed-loop system, the small-gain theorem is used. The proposed stability procedure gives a sufficient condition to guarantee stability of the system in the presence of time delays. Experimental results performed on an MM/SS system with two operators communicating through the Internet demonstrate the validity of the proposed scheme.Copyright © 2012 by ASME
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.