Abstract

Abstract In this paper, we analyze stellar proper motions in the core of the globular cluster 47 Tucanae to explore the possibility of an intermediate-mass black hole (IMBH) influence on the stellar dynamics. Our use of short-wavelength photometry affords us an exceedingly clear view of stellar motions into the very center of the crowded core, yielding proper motions for >50,000 stars in the central 2′. We model the velocity dispersion profile of the cluster using an isotropic Jeans model. The density distribution is taken as a central IMBH point mass added to a combination of King templates. We individually model the general low-mass cluster objects (main sequence/giant stars), as well as the concentrated populations of heavy binary systems and dark stellar remnants. Using unbinned likelihood model fitting, we find that the inclusion of the concentrated populations in our model plays a crucial role in fitting for an IMBH mass. The concentrated binaries and stellar-mass black holes (BHs) produce a sufficient velocity dispersion signal in the core so as to make an IMBH unnecessary to fit the observations. We additionally determine that a stellar-mass BH retention fraction of ≳8.5% becomes incompatible with our observed velocities in the core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.