Abstract

The family Epicopeiidae is a small group of day-flying moths, known for mimicking many different groups of butterflies and moths. So far, there still lacks a reliable phylogenetic framework of Epicopeiidae that is necessary to our understanding of the evolutionary process of their mimicry. In this study, we sequenced 94 nuclear protein-coding markers for 56 epicopeiid samples and 11 outgroups, covering all ten genera of Epicopeiidae. We used homemade PCR-generated baits to capture target sequences, which allowed us to utilize old and dried specimens that were difficult to handle by conventional PCR + Sanger sequencing. Maximum likelihood and Bayesian analyses of the newly obtained dataset (86,388 bp) at both DNA and protein levels produced identical phylogenies with strong support. The non-mimicry genus Deuveia is the sister group of other epicopeiid genera. Epicopeia and Nossa are not monophyletic, and these two genera nest together to form a clade. We also estimated divergence times of Epicopeiidae and found that their initial diversification happened in Eocene about 41 million years ago. The ancestral state reconstruction of mimicry type for this family suggested that thelast common ancestor of epicopeiid moths is non-mimetic, and the Riodinidae-mimicry type evolved first. In summary, our work provides a comprehensive and robust time-calibrated phylogeny of Epicopeiidae that provides a sound framework for revising their classification and interpreting character evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call