Abstract

Stochastic collocation methods for approximating the solution of partial differential equations with random input data (e.g., coefficients and forcing terms) suffer from the curse of dimensionality whereby increases in the stochastic dimension cause an explosion of the computational effort. We propose and analyze a multilevel version of the stochastic collocation method that, as is the case for multilevel Monte Carlo (MLMC) methods, uses hierarchies of spatial approximations to reduce the overall computational complexity. In addition, our proposed approach utilizes, for approximation in stochastic space, a sequence of multidimensional interpolants of increasing fidelity which can then be used for approximating statistics of the solution as well as for building high-order surrogates featuring faster convergence rates. A rigorous convergence and computational cost analysis of the new multilevel stochastic collocation method is provided in the case of elliptic equations, demonstrating its advantages compared to standard single-level stochastic collocation approximations as well as MLMC methods. Numerical results are provided that illustrate the theory and the effectiveness of the new multilevel method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.