Abstract

Multigrid techniques for three-dimensional (3-D) electromagnetic scattering problems are presented. The numerical representation of the physical problem is accomplished via a finite-element discretization, with nodal basis functions. A total magnetic field formulation with a vector absorbing boundary condition (ABC) is used. The principal features of the multilevel technique are outlined. The basic multigrid algorithms are described and estimations of their computational requirements are derived. The multilevel code is tested with several scattering problems for which analytical solutions exist. The obtained results clearly indicate the stability, accuracy, and efficiency of the multigrid method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.