Abstract

This brief presents a nonisolated multilevel linear amplifier with nonlinear component (LINC) power amplifier (PA) implemented in a standard 0.18- $\mu\text{m}$ complementary metal–oxide–semiconductor process. Using a nonisolated power combiner, the overall power efficiency is increased by reducing the wasted power at the combined out-phased signal; however, the efficiency at low power still needs to be improved. To further improve the efficiency of the low-power (LP) mode, we propose a multiple-outputpower-level LINC PA, with load modulation implemented by switches. In addition, analysis of the proposed design on the system level as well as the circuit level was performed to optimize its performance. The measurement results demonstrate that the proposed technique maintains more than 45% power-added efficiency (PAE) for peak power at 21 dB for the high-power mode and 17 dBm for the LP mode at 600 MHz. The PAE for a 6-dB peak-to-average ratio orthogonal frequency-division multiplexing modulated signal is higher than 24% PAE in both power modes. To the authors' knowledge, the proposed output-phasing PA is the first implemented multilevel LINC PA that uses quarter-wave lines without multiple power supply sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.