Abstract

DC–DC converters are gaining attention due to their importance in key applications like renewable energy generation. A desirable feature in new DC–DC converters is a reduction in the size, which can be achieved with a reduction in the energy stored in the inductors. This article introduces a new step-up DC–DC converter topology with the following advantages: (i) a larger relation of duty cycle vs. voltage gain compared with the classical boost topology and (ii) an inductor with smaller current and smaller inductance (for the same power conversion characteristics) compared to the traditional boost converter. The smaller inductor current is an advantage against many step-up topologies with the inductor in series with the input (and then the input and the inductor currents are equal). The necessary inductance to achieve a certain current ripple is also reduced compared to the classical boost topology. This results in an inductor with a smaller amount of stored energy, lower inductance, and lower current. The proposed topology can be scaled to have a full family of large-voltage-gain converters. This paper presents the mathematical analysis, simulations, and experiments to assess the benefits of the proposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.