Abstract

The recent years have witnessed a surge of interest in graph-based semi-supervised learning methods. The common denominator of these methods is that the data are represented by the nodes of a graph, the edges of which encode the pairwise similarities of the data. Despite the theoretical and empirical success, these methods have one major bottleneck which is the high computational complexity (since they usually need to solve a large-scale linear system of equations). In this paper, we propose a multilevel scheme for speeding up the traditional graph based semi-supervised learning methods. Unlike other accelerating approaches based on pure mathematical derivations (like conjugate gradient descent and Lanczos iteration) or intuitions, our method (1) has explicit physical meanings with some graph intuitions; (2) has guaranteed performance since it is closely related to the algebraic multigrid methods. Finally experimental results are presented to show the effectiveness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.