Abstract

Abstract This paper presents a multilevel ant colony optimization (MLACO) approach to solve constrained forest transportation planning problems (CFTPPs). A graph coarsening technique is used to coarsen a network representing the problem into a set of increasingly coarser level problems. Then, a customized ant colony optimization (ACO) algorithm is designed to solve the CFTPP from coarser to finer level problems. The parameters of the ACO algorithm are automatically configured by evaluating a parameter combination domain through each level of the problem. The solution obtained by the ACO for the coarser level problems is projected into finer level problem components, which are used to help the ACO search for finer level solutions. The MLACO was tested on 20 CFTPPs and solutions were compared to those obtained from other approaches including a mixed integer programming (MIP) solver, a parameter iterative local search (ParamILS) method, and an exhaustive ACO parameter search method. Experimental results showed that the MLACO approach was able to match solution qualities and reduce computing time significantly compared to the tested approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.