Abstract

Multi-layered scaffolds are advantageous in vascular tissue engineering, in consideration of better combination of biomechanics, biocompatibility and biodegradability than the scaffolds with single structure. In this study, a bi-directional gradient electrospinning method was developed to fabricate poly(l-lactide-co-caprolactone) (P(LLA-CL)), collagen and chitosan based tubular scaffold with multi-layered symmetrical structure. The multi-layered composite scaffold showed improved mechanical property and biocompatibility, in comparison to the blended scaffold using the same proportion of raw materials. Endothelialization on the multi-layered scaffold was accelerated owing to the bioactive surface made of pure natural materials. hSMCs growth showed the similar results because of its better biocompatibility. Additionally, fibers morphology change, pH value balance and long term mechanical support results showed that the gradient structure effectively improved biodegradability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.