Abstract

A Multilayered Self-Learning Spiking Neural Network and its Learning Algorithm Based on ‘Winner-Takes-More’ Rule in Hierarchical ClusteringThis paper introduces architecture of multilayered selflearning spiking neural network for hierarchical data clustering. It consists of the layer of population coding and several layers of spiking neurons. Contrary to originally suggested multilayered spiking neural network, the proposed one does not require a separate learning algorithm for lateral connections. Irregular clusters detecting capability is achieved by improving the temporal Hebbian learning algorithm. It is generalized by replacing ‘Winner-Takes-All’ rule with ‘Winner-Takes-More’ one. It is shown that the layer of receptive neurons can be treated as a fuzzification layer where pool of receptive neurons is a linguistic variable, and receptive neuron within a pool is a linguistic term. The network architecture is designed in terms of control systems theory. Using the Laplace transform notion, spiking neuron synapse is presented as a second-order critically damped response unit. Spiking neuron soma is modeled on the basis of bang-bang control systems theory as a threshold detection system. Simulation experiment confirms that the proposed architecture is effective in detecting irregular clusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.