Abstract

The bimolecular nucleophilic substitution (SN 2) reaction of CH3 F + OH(-) in aqueous solution was investigated using a combined quantum mechanical and molecular mechanics approach. Reactant complex, transition state, and product complex along the reaction pathway were analyzed in water. The potentials of mean force were calculated using a multilayered representation with the DFT and CCSD(T) level of theory for the reactive region. The obtained free energy activation barrier for this reaction at the CCSD(T)/MM representation is 18.3 kcal/mol which agrees well with the experimental value at ∼21.6 kcal/mol. Both the solvation effect and solute polarization effect play key roles on raising the activation barrier height in aqueous solution, with the former raising the barrier height by 3.1 kcal/mol, the latter 1.5 kcal/mol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.