Abstract

An important approach in visual neuroscience considers how the function of the early visual system relates to the statistics of its natural input. Previous studies have shown how many basic properties of the primary visual cortex, such as the receptive fields of simple and complex cells and the spatial organization (topography) of the cells, can be understood as efficient coding of natural images. Here we extend the framework by considering how the responses of complex cells could be sparsely represented by a higher-order neural layer. This leads to contour coding and end-stopped receptive fields. In addition, contour integration could be interpreted as top-down inference in the presented model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.