Abstract
ABSTRACTSoil erosion processes which contribute to desertification and land degradation, constitute major environmental and social issues for the coming decades. This is particularly true in arid areas where rural populations mostly depend on soil ability to support crop production. Assessment of soil erosion across large and quite diverse areas is very difficult but crucial for planning and management of the natural resources. The purpose of this paper is to investigate a prediction model for soil vulnerability to erosion based on the use of the information contained in satellite images. Based on neural networks models, the used approach in this paper aims at checking a correlation between the digital content of satellite images and soil vulnerability factors: erosivity (R), the soil erodibility (K), and the slope length and steepness (LS); vulnerability (V) as described in the RUSLE model. Significant results have been obtained for R and K factors. This promising pilot study was conducted in South Ferlo, Senegal, a region with Sahelian environmental characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Parallel, Emergent and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.