Abstract

Currently, there is a lack of general-purpose, in-place learning engines that incrementally learn multiple tasks, to develop "soft" multi-task-shared invariances in the intermediate internal representation while a developmental robot interacts with its environment. In-place learning is a biologically inspired concept, rooted in the genomic equivalence principle, meaning that each neuron is responsible for its own development while interacting with its environment. With in-place learning, there is no need for a separate learning network. Computationally, biologically inspired, in-place learning provides unusually efficient learning algorithms whose simplicity, low computational complexity, and generality are set apart from typical conventional learning algorithms. We present in this paper the multiple-layer in-place learning network (MILN) for this ambitious goal. As a key requirement for autonomous mental development, the network enables both unsupervised and supervised learning to occur concurrently, depending on whether motor supervision signals are available or not at the motor end (the last layer) during the agent's interactions with the environment. We present principles based on which MILN automatically develops invariant neurons in different layers and why such invariant neuronal clusters are important for learning later tasks in open-ended development. From sequentially sensed sensory streams, the proposed MILN incrementally develops a hierarchy of internal representations. The global invariance achieved through multi-layer invariances, with increasing invariance from early layers to the later layers. Experimental results with statistical performance measures are presented to show the effects of the principles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.