Abstract

A solution is given for the three-dimensional stress field near a through-thickness edge crack in a thin ± 45° laminate having elastic ply moduli typical of graphite/epoxy. The stress distribution was obtained by a three-dimensional multilayer finite element analysis based on the hybrid stress model, formulated through the minimum complementary energy principle. The results indicate that the in-plane stresses of each individual ply follow the classical 1 √r stress singularity, but that the shape of isostress contours in the crack tip region is strongly distorted from predictions based on two-dimensional anisotropic fracture mechanics theory. The interlaminar shear stresses increase rapidly as the crack tip is approached, but are restricted to a local region around the crack tip and flanks. The interlaminar normal stress is assumed to be negligible in the formulation of the analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call