Abstract
This paper proposes an image filtering and retrieval system driven by the multi-instance learning (MIL) algorithm. This system is aimed at improving the mission effectiveness of human analysts in searching through imagery for environmental, defense, or other purposes. Thus, the system is tuned and the experimental results are measured in terms of the true positive rate in predicted labels. While MIL has been used in image retrieval before, this paper examines how different tasks and feature spaces impact the performance of the algorithm. Images are translated into the single blob with neighbors (SBN) feature space, a novel feature space called color, texture, and shape (CTS), and a combined SBN and CTS feature space, for processing by the MIL algorithm. The paper introduces a feature space selection step in the classification process and shows that the true positive rate can be increased through the addition of this step.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.