Abstract

Flapping electromagnetic-reed generators are investigated to harvest wind energy, even at low cutoff wind speeds. Power electronic interfaces are intended to address ac–dc conversion and power conditioning for single- or multiple-channel systems. However, the generated voltage of each generator reed at low wind speed is usually below the threshold voltage of power electronic semiconductor devices, increasing the difficulty and inefficiency of rectification, particularly at relatively low output powers. This paper proposes a multiinput bridgeless resonant ac–dc converter to achieve ac–dc conversion, step-up voltage and match optimal impedance for a multichannel electromagnetic energy harvesting system. Alternating voltage of each generator is stepped up through the switching LC network and then rectified by a freewheeling diode. Its resonant operation enhances efficiency and enables miniaturization through high frequency switching. The optimal electrical impedance can be adjusted through resonance impedance matching and pulse-frequency-modulation control. A 5 cm × 3 cm, six-input standalone prototype is fabricated to address power conditioning for a six-channel wind panel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.