Abstract

Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call