Abstract
This paper presents a semi-implicit numerical method for the simulation of grain growth in two dimensions with a multi-phase field model. To avoid the strong stability condition of traditional explicit methods, a first-order, semi-implicit discretisation scheme is employed, which offers a good compromise with regard to memory intensity and computational requirements. A nonlinear multigrid solver based on the Full Approximation Scheme is implemented to solve the equations resulting from this discretisation. Simulations with the multigrid solver show that the solver has grid size independent convergence properties and is faster than a standard first-order explicit solver. As such, the multigrid solver promises to be a reliable additional computational tool for the simulation of microstructural evolution. A comparison with existing alternatives remains, however, subject of further investigation. To validate the implementation, the results of specific test cases are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.