Abstract
In the computation of flow over complex configurations, the use of overset grids eases the grid generation process, but the non-trivial task of ensuring communication between the overlapping grids must first be established. This need is efficiently addressed by using a new practically useful implicit hole cutting (IHC) method introduced by Lee and Baeder. This approach is a cell selection process based on the main criterion of cell size, and all grid points including hole interior points and hole fringe points are treated indiscriminately in the flow computation. Potentially these features ease the implementation of the multigrid algorithms which are rarely used in overset methods. The present study addresses the use of IHC method as an inter-grid communication method within a hybrid multi-block framework amenable for the implementation of a multigrid method and parallel computation. The convergence, accuracy and efficiency of the current solver are assessed particularly for the large-scale computations of realistic aerodynamic configurations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.