Abstract

Abstract Numerical methods for computing Steklov eigenvalues have attracted the attention of academia for their important physical background and wide applications. In this article we discuss the multigrid discretization scheme based on the shifted inverse iteration for the Steklov eigenvalue problem in inverse scattering, and give the error estimation of the proposed scheme. In addition, on the basis of the a posteriori error indicator, we design an adaptive multigrid algorithm. Finally, we present numerical examples to show the efficiency of the proposed scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.