Abstract

We propose a multigrid approach for the global optimization of polynomial optimization problems with sparse support. The problems we consider arise from the discretization of infinite dimensional optimization problems, such as PDE optimization problems, boundary value problems, and some global optimization applications. In many of these applications, the level of discretization can be used to obtain a hierarchy of optimization models that capture the underlying infinite dimensional problem at different degrees of fidelity. This approach, inspired by multigrid methods, has been successfully used for decades to solve large systems of linear equations. However, multigrid methods are difficult to apply to semidefinite programming (SDP) relaxations of polynomial optimization problems. The main difficulty is that the information between grids is lost when the original problem is approximated via an SDP relaxation. Despite the loss of information, we develop a multigrid approach and propose prolongation operator...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call