Abstract

Recommendation systems are a clear example of an e-service that helps the users to find the most suitable products they are looking for, according to their preferences, among a vast quantity of information. These preferences are usually related to human perceptions because the customers express their needs, taste, and so forth to find a suitable product. The perceptions are better modeled by means of linguistic information due to the uncertainty involved in this type of information. In this article, we propose a content-based recommendation model that will offer a more flexible context to improve the final recommendations where the preferences provided by the sources will be modeled by means of linguistic variables assessed in different linguistic term sets. The proposal consists of offering a multigranular linguistic context for expressing the preferences instead of forcing users to use a unique scale. Then the content-based recommendation model will look for the most suitable product(s), comparing them with the customer(s) information according to its resemblance. © 2007 Wiley Periodicals, Inc. Int J Int Syst 22: 419–434, 2007.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.