Abstract

This paper proposes a novel multifunctional ultra-thin membrane based on a Polyborosiloxane-based gel with stimuli-responsive sound absorption and sound transmission loss (STL) and characterised by excellent self-healing properties. This adaptive behaviour is the result of a dynamically activated phase transition in the membrane’s polymeric network which is given by the interaction with the travelling sound pressure wave. The presence and the extent of such phase transition in the material was investigated via oscillatory rheological measurements showing the possibility to control the dynamic response by modifying the Boron content within the polymer. Acoustic analyses conducted at different stimuli responses showed high and dynamic absorption (95%) at the absorption coefficient peaks and an adaptive shift to lower frequencies while sound amplitudes were increased. An average STL up to 27 dB in the frequency range between 500 to 1000 Hz was observed and an increased STL above 2 dB was measured as the excitation amplitude was increased. Results demonstrated that the new membrane can be used to develop deep subwavelength absorbers with unique properties (1/54 wavelength in absorption and 1/618 in STL) able to tune their performance in response to an external stimulus while autonomously regaining their properties in case of damage thanks to their self-healing ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.