Abstract

A novel three-dimensional microporous terbium(III) metal–organic framework (Tb-MOF) named as [Tb10 (DBA)6(OH)4(H2O)5]·(H3O)4 (1), was successfully obtained by a solvothermal method based on terbium nitrate and 5-di(2′,4′-dicarboxylphenyl) benzoic acid (H5DBA). The Tb-MOF has been characterized by single crystal X-ray diffraction, elemental analysis, thermogravimetry, and fluorescence properties, and the purity was further confirmed by powder X-ray diffraction (PXRD) analysis. Structural analysis shows that there are two kinds of metal cluster species: binuclear and tetranuclear, which are linked by H5DBA ligands in two μ7 high coordination fashions into a three-dimensional microporous framework. Fluorescence studies show that the Tb-MOF can detect H2O2, Fe3+, and Cr2O72– with high sensitivity and selectivity and can also be used for electrochemical detection of exposed 2,4,6-trinitrophenylamine (TPA) in water. The highly selective and sensitive detection ability of the Tb-MOF might make it a potential multifunctional sensor in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.