Abstract
The utilization of metal-organic frameworks (MOFs) as fluorescent sensors for the detection of environmental and chemical reagent pollutants as well as heterogeneous catalysis for CO2 conversion represents a crucial avenue of research with significant implications for the protection of human health. In this work, a Tb(III)-based three-dimensional metal-organic framework, [Tb(L)·4DMF]n (Tb-MOF) (H3L = 5'-(4-carboxy-3-hydroxyphenyl)-3,3″-dihydroxy-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid), has been structurally conformed by single-crystal X-ray crystallography. It possesses a 1D rhombus channel along the [010] direction, featuring a pore size of 6.02 × 9.13 Å. Tb-MOF was proved to be a multifunctional material for a fluorescent sensor and CO2 cycloaddition heterogeneous catalyst material. Fluorescence sensing studies revealed that Tb-MOF demonstrates high sensitivity, selectivity, and favorable regeneration properties, making it an effective chemosensor for detecting the metamitron (MMT) pesticide and trace water in organic solvents. The mechanism of fluorescence quenching by MMT and water was elucidated by a combination of XRD, UV-vis absorption spectra, IR spectra, theoretical calculations, and fluorescence lifetimes. The material was also utilized for the sensing of MMT and water in paper strips. Additionally, the open Tb3+ site as Lewis acidic centers makes Tb-MOF achieve efficiently catalytic conversion for CO2 and epoxides to cyclic carbonates. Moreover, a possible catalytic mechanism for the conversion of carbon dioxide to cyclic carbonates was proposed by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments. It also exhibited recyclability for up to five cycles without noticing an appreciable loss in sensing or catalytic efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.