Abstract

We used thiamine nitrate (TN) as single material to fabricate nitrogen and sulfur co-doped carbon quantum dots (N,S-CQDs) with a quantum yield of 10.4% through one-pot hydrothermal method, and its properties were characterized by TEM, XPS, FTIR, fluorescence (FL) and UV-vis spectrophotometer, respectively. The fluorescence of N,S-CQDs was effectively quenched in the presence of vitamin B12 (VB12)/tartrazine due to Förster resonance energy transfer (FRET). Moreover, the rate (KT) and efficiency (E%) of energy transfer from N,S-CQDs (as a donor) to VB12/tartrazine (as an acceptor) enhanced with increasing the concentrations of acceptor, and the KT and E% were also varied with the change of excitation wavelengths (from 338 to 408 nm). Based on this principle, a multifunctional fluorescence probe was designed for selective and sensitive detection of VB12/tartrazine with a detection limit (3σ/slope) of 15.6/18.0 nmol/L. Meanwhile, the proposed method was successfully employed to detect VB12/tartrazine in milk and several beverages with a recovery range of 97.5-104.2%/91.0-110.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.