Abstract
High-frequency (>20 MHz) ultrasound (HFUS) imaging systems have made it possible to image small structures with fine spatial resolution. They find a variety of biomedical applications in dermatology, ophthalmology, intravascular imaging, and small-animal imaging. One critical technical challenge of HFUS is to generate high-voltage, high-frequency pulsed signals to effectively excite the transducer for a high SNR. This paper presents the development of a multifunctional, reconfigurable pulse generator for HFUS imaging. The pulse generator can produce a high-voltage unipolar pulse, a bipolar pulse, or arbitrary pulses for B-mode imaging, Doppler measurement, and modulated excitation imaging. The characteristics of the pulses, such as timing, waveform, and frequency are reconfigurable by a high-speed field-programmable gate array (FPGA). Customized software was developed to interface with the FPGA through a USB connector for pulse selection, and easy, flexible, real-time pulse management. The hardware was implemented in a compact, printed circuit board (PCB)-based scheme using state-of-the-art electronics for costeffectiveness and fully digital control. Testing results show that the unipolar pulse can reach over 165 Vpp with a 6-dB bandwidth of 70 MHz, and the bipolar pulse and arbitrary pulses can reach 150 and 60 Vpp with central frequencies of 60 and 120 MHz, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.