Abstract

AbstractMicrowave photonics (MWP) studies the interaction between microwaves and optical waves for the generation, transmission, and processing of microwave signals (i.e., three key domains), taking advantage of the broad bandwidth and low loss offered by modern photonics. Integrated MWP using photonic integrated circuits (PICs) can reach a compact, reliable, and green implementation. Most PICs, however, are recently developed to perform one or more functions restricted inside a single domain. Herein, as highly desired, a multifunctional PIC is proposed to cover the three key domains. The PIC is fabricated on an InP platform by monolithically integrating four laser diodes and two modulators. Using the multifunctional PIC, seven fundamental functions across microwave signal generation, transmission, and processing are demonstrated experimentally. Outdoor field trials for electromagnetic environment surveillance along in‐service high‐speed railways are also performed. The success of such a PIC marks a key step forward for practical and massive MWP implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.