Abstract

Graphitic carbon nitride quantum dots (g-CNQDs) have shown great potential in imaging, drug delivery and photodynamic therapy (PDT). However, relevant research on g-CNQDs for PDT or drug delivery has been conducted separately. Herein, we develop a g-CNQDs-based nanoplatform (g-CPFD) to achieve simultaneously imaging and chemo-photodynamic combination therapy in one system. A g-CNQDs-based nanocarrier (g-CPF) is first prepared by successively introducing carboxyamino-terminated oligomeric polyethylene glycol and folic acid onto the surface of g-CNQDs via two-step amidation. The resultant g-CPF possesses good physiological stability, strong blue fluorescence, desirable biocompatibility, and visible light-stimulated reactive oxygen species generating ability. Further non-covalently loaded doxorubicin enables the system with chemotherapy function. Compared with free doxorubicin, g-CPFD expresses more efficient chemotherapy to HeLa cells due to improved folate receptor-mediated cellular uptake and intracellular pH-triggered drug release. Furthermore, g-CPFD under visible light irradiation shows enhanced inhibition on the growth of cancer cells compared to sole chemotherapy or PDT. Thus, g-CPFD exhibits exceptional anti-tumor efficiency due to folate receptor-mediated targeting ability, intracellular pH-triggered drug release and a combined treatment effect arising from PDT and chemotherapy. Moreover, this nanoplatform benefits imaging-guided drug delivery because of inherent fluorescent properties of doxorubicin and g-CPF, hence achieving the goal of imaging-guided chemo-photodynamic combination treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call