Abstract

Drug resistance resulting from diverse mechanisms including the presence of cancer stem cells (CSCs) is the main obstacle for improving therapeutic efficacy of lenvatinib in hepatocellular carcinoma (HCC). Herein, a nanomedicine (siCD24-Len-MnO@PLAP) is developed by incorporating manganese oxide (MnO), lenvatinib (Len), and siRNA against CD24 (siCD24) into micelles composed of methoxypolyethylene glycol (mPEG), poly-L-lysine (PLLys), and polyasparagyl(N-(2-Aminoethyl)piperidine) (PAsp(PIP)) triblock copolymer. The nanomedicine can respond to the tumor microenvironment (TME) to release lenvatinib, and produce Mn2+ and O2, accompanied by changes in nanoparticle charge, which facilitates cellular endocytosis of siCD24-loaded nanoparticles. The released siCD24 and lenvatinib synergistically reduces CD24 expression, resulting in a more pronounced inhibition of stemness of CSCs. In the mouse models of HCC using Huh7-derived CSCs and Hepa1-6-derived CSCs, the nanomedicine shows remarkable anti-cancer effect by enhancing the therapeutic effects of lenvatinib against HCC via reducing the expression level of CD24 and decreasing the expression of hypoxia inducible factor-1α (HIF-1α). Moreover, in situ production of paramagnetic Mn2+ from the nanomedicine serves as an excellent contrast agent for magnetic resonance imaging (MRI) to monitor the therapeutic process. This study demonstrates that this multifunctional MRI-visible siCD24- and lenvatinib-loaded nanodrug holds great potential in enhancing therapeutic sensitivity for HCC lenvatinib therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.