Abstract

Electroorganic synthesis is a promising tool to design sustainable transformations and discover new reactivities. However, the added setup complexity caused by electrodes in the system impedes efficient screening of reaction conditions. Herein, we present a microfluidic platform that enables automated high-throughput experimentation (HTE) for electroorganic synthesis at a 15-microliter scale. Two HTE modules are demonstrated: 1) the rapid electrochemical reaction condition screening for a radical-radical cross-coupling reaction on micro-fabricated interdigitated electrodes, and 2) measurements of kinetics for mediated anodic oxidations using the microliter-scale cyclic voltammetry. The presented modular approach could be deployed for a range of other electroorganic chemistry applications beyond the demonstrated functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.